TEMARIO

martes, 8 de noviembre de 2011

MECANICA CUANTICA LA NUEVA CIENCIA MODERNA. EL EXPERIMENTO DE LA DOBLE RANURA

Habrá que acostumbrarse que lo pequeño no se comporta de la misma forma que los objetos  con los que estamos familiarizados, en el mundo de lo pequeño las leyes Fisicas habituales dejan de funcionar siendo gobernados por la PROBABILIDAD.
¿EN QUÉ CONSISTE LA MECÁNICA CUÁNTICA?
Los sistemas atómicos y las partículas elementales no se pueden describir con las teorías que usamos para estudiar los cuerpos macroscópicos (como las rocas, los carros, las casas, etc). Esto de debe a un hecho fundamental respecto al comportamiento de las partículas y los átomos que consiste en la imposibilidad de medir todas sus propiedades simultáneamente de una manera exacta. Es decir en el mundo de los átomos siempre existe una INCERTIDUMBRE que no puede ser superada. La mecánica cuántica explica este comportamiento.
 
Dos de las teorías que intentaban explicar lo que nos rodea, la ley de gravitación universal y la teoría electromagnética clásica, se volvían insuficientes para explicar ciertos fenómenos.
Fue Max Planck quien entonces enunció la hipótesis de que la radiación electromagnética es absorbida y emitida por la materia en forma de «cuantos» de luz o fotones de energía mediante una constante estadística, que se denominó constante de Planck.
La mecánica cuántica, también conocida como física cuántica, es la parte de la física que estudia el movimiento de las partículas muy pequeñas, el comportamiento de la materia a escala muy pequeña. El concepto de partícula muy pequeña atiende al tamaño en el cual comienzan a notarse efectos como la imposibilidad de conocer con exactitud arbitraria y simultáneamente la posición y el momento de una partícula (Principio de indeterminación de Heisenberg), entre otros. A tales efectos suele denominárseles efectos cuánticos. Así, la mecánica cuántica es la que rige el movimiento de sistemas en los cuales los efectos cuánticos sean relevantes. Se ha documentado que tales efectos son importantes en materiales mesoscópicos -unos 1.000 átomos.
En el mundo del átomo y sus componentes, todo aparece en montones (quantum = cuanto = montón). La masa, la energía, el momento, etc., aparece en montones: nada en este mundo es liso y continuo. Mecánica es el antiguo término para la Ciencia del movimiento, así que Mecánica Cuántica es la rama de la Ciencia dedicada a describir el movimiento de las cosas en el mundo subatómico. Mott la define como la rama de la Física que describe el comportamiento de los electrones en los átomos, en las moléculas y en los sólidos o también como la rama de la Física matemática que permite calcular las propiedades de los átomos. Sin embargo es algo más que eso:
La Mecánica Cuántica proporciona el soporte fundamental de toda la Ciencia moderna; sus ecuaciones describen el comportamiento de objetos a escala atómica, proporcionando la única explicación del mundo de lo minúsculo. Sin sus ecuaciones, los científicos no habrían sido capaces de diseñar centrales o bombas nucleares, construir láseres, explicar por qué el Sol se mantiene caliente, la Química estaría aún en una época oscura y no existiría la biología molecular, la comprensión del DNA, la ingeniería genética, etc.,etc.,etc.
 El mayor problema que tenemos a la hora de ocuparnos de la Mecánica Cuántica procede de nuestra suposición inconsciente de que las cosas se comportarán del mismo modo en el mundo cuántico que como lo hacen en el mundo normal de nuestra experiencia. No hay ninguna razón para esperar que cuando contemplamos objetos muy pequeños u objetos muy veloces, éstos se comporten de la misma forma que lo hacen los objetos con los que estamos familiarizados. La Física Cuántica representa una de las conquistas fundamentales de la Ciencia, mucho más significativa y directa, desde el punto de vista práctico, que la Teoría de la Relatividad.
En su mundo, las leyes habituales de la Física dejan de funcionar: los acontecimientos pasan a estar gobernados por probabilidades. La Relatividad y la Mecánica Cuántica constituyen las teorías básicas de la Física moderna; independientemente del grupo de Gotinga, Dirac descubrió que las ecuaciones de la Mecánica Cuántica tienen la misma estructura matemática que las ecuaciones de la Mecánica clásica, y que ésta es un caso particular de la Cuántica correspondiente a grandes números cuánticos o a dar el valor 0 a la constante de Plank.

Las suposiciones más importantes de esta teoría son las siguientes:
- La energía no se intercambia de forma continua, sino que en todo intercambio energético hay una cantidad mínima involucrada (cuantización de la energía).
- Al ser imposible fijar a la vez la posición y el momento de una partícula, se renuncia al concepto de trayectoria, vital en mecánica clásica. En vez de eso, el movimiento de una partícula queda regido por una función matemática que asigna, a cada punto del espacio y a cada instante, la probabilidad de que la partícula descrita se halle en tal posición en ese instante (al menos, en la interpretación de la mecánica cuántica más usual, la probabilística o de Copenhague). A partir de esa función, o función de ondas, se extraen teóricamente todas las magnitudes del movimiento necesarias.
Aunque la estructura formal de la teoría está bien desarrollada, y sus resultados son coherentes con los experimentos, no sucede lo mismo con su interpretación, que sigue siendo objeto de controversias.
Quiero hacer una mención especial al físico Dirac, ya que he hablado en un artículo anterior de la antimateria , siendo el uno de los máximos responsables de que ese concepto viera la luz.



PAUL DIRAC
Físico inglés nacido en Bristol, Gloucestershire, en 1902 y muerto en 1984. Estudió ingeniería eléctrica en la Universidad de Bristol, pero cambió de idea dedicándose a las matemáticas después de graduarse. Obtuvo su doctorado en la Universidad de Cambridge en 1926, haciendo de sí mismo un físico matemático. En 1932 ya era profesor lucasiano de matemáticas en Cambridge. Al final de los años 20, Dirac desarrolló de manera más precisa que Schroedinger, los estudios matemáticos iniciados por De Broglie sobre la dualidad onda-corpúsculo, explicando cómo a todas las partículas se les podía asociar una onda, y, por tanto, dando un gran impulso a la Mecánica Cuántica.  
Ciertas ecuaciones propuestas por Dirac indicaban la existencia de antipartículas, antielectrones y antiprotones, con igual masa y carga pero diferente signo que sus homólogas. A pesar que esta teoría resultaba extravagante, fue rápidamente confirmada por Anderson al descubrir el antielectrón o positrón dos años más tarde, y por Segrè, al descubrir el antiprotón 25 años más tarde. Dirac había descubierto con sus ecuaciones la antimateria, abriendo la puerta a tierra desconocida en el mundo de la Física. Por sus trabajos en Mecánica Cuántica y antipartículas recibió el Nobel en 1933, junto a Schroeinger, y en 1940 fue nombrado profesor del Dublín Institute for Advances Studies. Teórico extraordinariamente bien dotado, su libro "Los principios de la Mecánica Cuántica" es una obra ya clásica que corrobora la categoría de su autor, quien hoy es considerado por la mayoría de los físicos como el Newton del siglo XX.

No hay comentarios:

Publicar un comentario